python numpy module

NumPy 是一个 Python 包。 它代表 “Numeric Python”。 它是一个由多维数组对象和用于处理数组的例程集合组成的库。

Numeric,即 NumPy 的前身,是由 Jim Hugunin 开发的。 也开发了另一个包 Numarray ,它拥有一些额外的功能。 2005年,Travis Oliphant 通过将 Numarray 的功能集成到 Numeric 包中来创建 NumPy 包。 这个开源项目有很多贡献者。

NumPy Ndarray 对象

NumPy 最重要的一个特点是其 N 维数组对象 ndarray,它是一系列同类型数据的集合,以 0 下标为开始进行集合中元素的索引。

ndarray 对象是用于存放同类型元素的多维数组。

ndarray 中的每个元素在内存中都有相同存储大小的区域。

ndarray 内部由以下内容组成:

  • 一个指向数据(内存或内存映射文件中的一块数据)的指针。
  • 数据类型或 dtype,描述在数组中的固定大小值的格子。
  • 一个表示数组形状(shape)的元组,表示各维度大小的元组。
  • 一个跨度元组(stride),其中的整数指的是为了前进到当前维度下一个元素需要”跨过”的字节数。

创建一个 ndarray 只需调用 NumPy 的 array 函数即可:

numpy.array(object, dtype=None, copy=True, order=’K’, subok=False, ndmin=0)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
array(object, dtype=None, copy=True, order='K', subok=False, ndmin=0)

Create an array.

Parameters
----------
object : array_like
An array, any object exposing the array interface, an object whose
__array__ method returns an array, or any (nested) sequence.
dtype : data-type, optional
The desired data-type for the array. If not given, then the type will
be determined as the minimum type required to hold the objects in the
sequence. This argument can only be used to 'upcast' the array. For
downcasting, use the .astype(t) method.
copy : bool, optional
If true (default), then the object is copied. Otherwise, a copy will
only be made if __array__ returns a copy, if obj is a nested sequence,
or if a copy is needed to satisfy any of the other requirements
(`dtype`, `order`, etc.).
order : {'K', 'A', 'C', 'F'}, optional
Specify the memory layout of the array. If object is not an array, the
newly created array will be in C order (row major) unless 'F' is
specified, in which case it will be in Fortran order (column major).
If object is an array the following holds.

===== ========= ===================================================
order no copy copy=True
===== ========= ===================================================
'K' unchanged F & C order preserved, otherwise most similar order
'A' unchanged F order if input is F and not C, otherwise C order
'C' C order C order
'F' F order F order
===== ========= ===================================================

When ``copy=False`` and a copy is made for other reasons, the result is
the same as if ``copy=True``, with some exceptions for `A`, see the
Notes section. The default order is 'K'.
subok : bool, optional
If True, then sub-classes will be passed-through, otherwise
the returned array will be forced to be a base-class array (default).
ndmin : int, optional
Specifies the minimum number of dimensions that the resulting
array should have. Ones will be pre-pended to the shape as
needed to meet this requirement.

Returns
-------
out : ndarray
An array object satisfying the specified requirements.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
Examples
--------
>>> np.array([1, 2, 3])
array([1, 2, 3])

Upcasting:

>>> np.array([1, 2, 3.0])
array([ 1., 2., 3.])

More than one dimension:

>>> np.array([[1, 2], [3, 4]])
array([[1, 2],
[3, 4]])

Minimum dimensions 2:

>>> np.array([1, 2, 3], ndmin=2)
array([[1, 2, 3]])

Type provided:

>>> np.array([1, 2, 3], dtype=complex)
array([ 1.+0.j, 2.+0.j, 3.+0.j])

Data-type consisting of more than one element:

>>> x = np.array([(1,2),(3,4)],dtype=[('a','<i4'),('b','<i4')])
>>> x['a']
array([1, 3])

Creating an array from sub-classes:

>>> np.array(np.mat('1 2; 3 4'))
array([[1, 2],
[3, 4]])

>>> np.array(np.mat('1 2; 3 4'), subok=True)
matrix([[1, 2],
[3, 4]])

数据类型对象 (dtype)

数据类型对象是用来描述与数组对应的内存区域如何使用,这依赖如下几个方面:

  • 数据的类型(整数,浮点数或者 Python 对象)
  • 数据的大小(例如, 整数使用多少个字节存储)
  • 数据的字节顺序(小端法或大端法)
  • 在结构化类型的情况下,字段的名称、每个字段的数据类型和每个字段所取的内存块的部分
  • 如果数据类型是子数组,它的形状和数据类型

字节顺序是通过对数据类型预先设定”<”或”>”来决定的。”<”意味着小端法(最小值存储在最小的地址,即低位组放在最前面)。”>”意味着大端法(最重要的字节存储在最小的地址,即高位组放在最前面)。

dtype(obj, align=False, copy=False)

  • object - 要转换为的数据类型对象
  • align - 如果为 true,填充字段使其类似 C 的结构体。
  • copy - 复制 dtype 对象 ,如果为 false,则是对内置数据类型对象的引用

NumPy 数组属性

NumPy 数组的维数称为秩(rank),秩就是轴的数量,即数组的维度,一维数组的秩为 1,二维数组的秩为 2,以此类推。

在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions)。比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组。所以一维数组就是 NumPy 中的轴(axis),第一个轴相当于是底层数组,第二个轴是底层数组里的数组。而轴的数量——秩,就是数组的维数。

很多时候可以声明 axis。axis=0,表示沿着第 0 轴进行操作,即对每一列进行操作;axis=1,表示沿着第1轴进行操作,即对每一行进行操作。

NumPy 的数组中比较重要 ndarray 对象属性有:

属性 说明
ndarray.ndim 秩,即轴的数量或维度的数量
ndarray.shape 数组的维度,对于矩阵,n 行 m 列
ndarray.size 数组元素的总个数,相当于 .shape 中 n*m 的值
ndarray.dtype ndarray 对象的元素类型
ndarray.itemsize ndarray 对象中每个元素的大小,以字节为单位
ndarray.flags ndarray 对象的内存信息
ndarray.real ndarray元素的实部
ndarray.imag ndarray 元素的虚部
ndarray.data 包含实际数组元素的缓冲区,由于一般通过数组的索引获取元素,所以通常不需要使用这个属性。

NumPy 创建数组

numpy.empty(shape, dtype = float, order = ‘C’)

numpy.empty 方法用来创建一个指定形状(shape)、数据类型(dtype)且未初始化的数组

参数说明:

参数 描述
shape 数组形状
dtype 数据类型,可选
order 有”C”和”F”两个选项,分别代表,行优先和列优先,在计算机内存中的存储元素的顺序。

numpy.zeros(shape, dtype = float, order = ‘C’)

创建指定大小的数组,数组元素以 0 来填充

参数说明:

参数 描述
shape 数组形状
dtype 数据类型,可选
order ‘C’ 用于 C 的行数组,或者 ‘F’ 用于 FORTRAN 的列数组

numpy.ones(shape, dtype = None, order = ‘C’)

创建指定形状的数组,数组元素以 1 来填充

参数说明:

参数 描述
shape 数组形状
dtype 数据类型,可选
order ‘C’ 用于 C 的行数组,或者 ‘F’ 用于 FORTRAN 的列数组
1
2
3
4
5
6
7
8
9
10
11
12
import numpy as np

# 默认为浮点数
x = np.ones(5)
print(x) # [1. 1. 1. 1. 1.]

# 自定义类型
x = np.ones([2,2], dtype = int)
print(x)

#[[1 1]
# [1 1]]

numpy.full(shape, fill_value, dtype=None, order=’C’)

返回一个给定形状和类型的新数组,用’ fill_value ‘填充

参数说明:

参数 描述
shape 数组形状
dtype 数据类型,可选
order ‘C’ 用于 C 的行数组,或者 ‘F’ 用于 FORTRAN 的列数组

numpy.asarray(a, dtype = None, order = None)

numpy.asarray 类似 numpy.array,但 numpy.asarray 参数只有三个,比 numpy.array 少两个。

参数说明:

参数 描述
a 任意形式的输入参数,可以是,列表, 列表的元组, 元组, 元组的元组, 元组的列表,多维数组
dtype 数据类型,可选
order 可选,有”C”和”F”两个选项,分别代表,行优先和列优先,在计算机内存中的存储元素的顺序。
1
2
3
4
5
import numpy as np 

x = [1,2,3]
a = np.asarray(x)
print (a) # [1 2 3]

numpy.frombuffer(buffer, dtype = float, count = -1, offset = 0)

numpy.frombuffer 用于实现动态数组。

numpy.frombuffer 接受 buffer 输入参数,以流的形式读入转化成 ndarray 对象。

注意: * *buffer 是字符串的时候,Python3 默认 str 是 Unicode 类型,所以要转成 bytestring 在原 str 前加上 b。

参数说明:

参数 描述
buffer 可以是任意对象,会以流的形式读入。
dtype 返回数组的数据类型,可选
count 读取的数据数量,默认为-1,读取所有数据。
offset 读取的起始位置,默认为0。
1
2
3
4
5
import numpy as np 

s = b'Hello World'
a = np.frombuffer(s, dtype = 'S1')
print (a) # [b'H' b'e' b'l' b'l' b'o' b' ' b'W' b'o' b'r' b'l' b'd']

numpy.fromiter(iterable, dtype, count=-1)

numpy.fromiter 方法从可迭代对象中建立 ndarray 对象,返回一维数组。

参数 描述
iterable 可迭代对象
dtype 返回数组的数据类型
count 读取的数据数量,默认为-1,读取所有数据
1
2
3
4
5
6
7
8
9
import numpy as np 

# 使用 range 函数创建列表对象
list=range(5)
it=iter(list)

# 使用迭代器创建 ndarray
x=np.fromiter(it, dtype=float)
print(x) # [0. 1. 2. 3. 4.]

numpy.arange([start,] stop[, step,], dtype=None)

根据 start 与 stop 指定的范围以及 step 设定的步长,生成一个 ndarray。

参数说明:

参数 描述
start 起始值,默认为0
stop 终止值(不包含)
step 步长,默认为1
dtype 返回ndarray的数据类型,如果没有提供,则会使用输入数据的类型。

numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)

numpy.linspace 函数用于创建一个一维数组,数组是一个等差数列构成的

参数说明:

参数 描述
start 序列的起始值
stop 序列的终止值,如果endpointtrue,该值包含于数列中
num 要生成的等步长的样本数量,默认为50
endpoint 该值为 true 时,数列中中包含stop值,反之不包含,默认是True。
retstep 如果为 True 时,生成的数组中会显示间距,反之不显示。
dtype ndarray 的数据类型
1
2
3
4
import numpy as np
a = np.linspace(1, 10, 10, retstep=True)
print(a)
# (array([ 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.]), 1.0)

numpy.logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None)

numpy.logspace 函数用于创建一个于等比数列。

base 参数意思是取对数的时候 log 的下标。

参数 描述
start 序列的起始值为:base ** start
stop 序列的终止值为:base ** stop。如果endpointtrue,该值包含于数列中
num 要生成的等步长的样本数量,默认为50
endpoint 该值为 true 时,数列中中包含stop值,反之不包含,默认是True。
base 对数 log 的底数。
dtype ndarray 的数据类型
1
2
3
4
5
6
7
8
9
10
11
import numpy as np

# base 10
a = np.logspace(1.0, 2.0, num = 10)
print (a)
# [ 10. 12.91549665 16.68100537 21.5443469 27.82559402 35.93813664 46.41588834 59.94842503 77.42636827 100. ]

# base 2
a = np.logspace(0,9,10,base=2)
print (a)
# [ 1. 2. 4. 8. 16. 32. 64. 128. 256. 512.]

NumPy 切片和索引

ndarray对象的内容可以通过索引或切片来访问和修改,与 Python 中 list 的切片操作一样。

ndarray 数组可以基于 0 - n 的下标进行索引,切片对象可以通过内置的 slice 函数,并设置 start, stop 及 step 参数进行,从原数组中切割出一个新数组。

1
2
3
4
5
6
import numpy as np

a = np.arange(10)
s = slice(2,7,2) # 从索引 2 开始到索引 7 停止,间隔为2
print (a[s])
[2 4 6]

也可以通过冒号分隔切片参数 start:stop:step 来进行切片操作:

1
2
3
4
5
6
import numpy as np

a = np.arange(10)
s = slice(2:7:2) # 从索引 2 开始到索引 7 停止,间隔为2
print (a[s])
[2 4 6]

切片还可以包括省略号 ,来使选择元组的长度与数组的维度相同。 如果在行位置使用省略号,它将返回包含行中元素的 ndarray。

1
2
3
4
5
6
7
8
9
10
import numpy as np

a = np.array([[1,2,3],[3,4,5],[4,5,6]])
print (a[...,1]) # 第2列元素 [2 4 5]
print (a[1,...]) # 第2行元素 [3 4 5]
print (a[...,1:]) # 第2列及剩下的所有元素

# [[2 3]
# [4 5]
# [5 6]]

NumPy 高级索引

整数数组索引

以下实例获取数组中(0,0),(1,1)和(2,0)位置处的元素。

1
2
3
4
5
import numpy as np 

x = np.array([[1, 2], [3, 4], [5, 6]])
y = x[[0,1,2], [0,1,0]]
print (y) # [1 4 5]

以下实例获取了 4X3 数组中的四个角的元素。 行索引是 [0,0] 和 [3,3],而列索引是 [0,2] 和 [0,2]。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import numpy as np 

x = np.array([[ 0, 1, 2],[ 3, 4, 5],[ 6, 7, 8],[ 9, 10, 11]])
print ('我们的数组是:' )
print (x)
print ('\n')
rows = np.array([[0,0],[3,3]])
cols = np.array([[0,2],[0,2]])
y = x[rows,cols]
print ('这个数组的四个角元素是:')
print (y)

我们的数组是:
[[ 0 1 2]
[ 3 4 5]
[ 6 7 8]
[ 9 10 11]]

这个数组的四个角元素是:
[[ 0 2]
[ 9 11]]

返回的结果是包含每个角元素的 ndarray 对象。

可以借助切片 : 与索引数组组合。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
import numpy as np

a = np.array([[1,2,3], [4,5,6],[7,8,9]])
b = a[1:3, 1:3]
c = a[1:3,[1,2]]
d = a[...,1:]
print(b)
print(c)
print(d)

[[5 6]
[8 9]]
[[5 6]
[8 9]]
[[2 3]
[5 6]
[8 9]]

布尔索引

我们可以通过一个布尔数组来索引目标数组。

布尔索引通过布尔运算(如:比较运算符)来获取符合指定条件的元素的数组。

以下实例获取大于 5 的元素:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import numpy as np 

x = np.array([[ 0, 1, 2],[ 3, 4, 5],[ 6, 7, 8],[ 9, 10, 11]])
print ('我们的数组是:')
print (x)
print ('\n')
# 现在我们会打印出大于 5 的元素
print ('大于 5 的元素是:')
print (x[x > 5])

我们的数组是:
[[ 0 1 2]
[ 3 4 5]
[ 6 7 8]
[ 9 10 11]]

大于 5 的元素是:
[ 6 7 8 9 10 11]

以下实例使用了 ~(取补运算符)来过滤 NaN。

1
2
3
4
5
6
import numpy as np 

a = np.array([np.nan, 1,2,np.nan,3,4,5])
print (a[~np.isnan(a)])

[ 1. 2. 3. 4. 5.]

花式索引

花式索引指的是利用整数数组进行索引。

花式索引根据索引数组的值作为目标数组的某个轴的下标来取值。对于使用一维整型数组作为索引,如果目标是一维数组,那么索引的结果就是对应位置的元素;如果目标是二维数组,那么就是对应下标的行。

花式索引跟切片不一样,它总是将数据复制到新数组中。

1、传入顺序索引数组

1
2
3
4
5
6
7
8
9
10
import numpy as np 

x=np.arange(32).reshape((8,4))
print (x[[4,2,1,7]])

输出结果为:
[[16 17 18 19]
[ 8 9 10 11]
[ 4 5 6 7]
[28 29 30 31]]

2、传入倒序索引数组

1
2
3
4
5
6
7
8
9
10
import numpy as np 

x=np.arange(32).reshape((8,4))
print (x[[-4,-2,-1,-7]])

输出结果为:
[[16 17 18 19]
[24 25 26 27]
[28 29 30 31]
[ 4 5 6 7]]

3、传入多个索引数组(要使用np.ix_)

1
2
3
4
5
6
7
8
9
10
import numpy as np 

x=np.arange(32).reshape((8,4))
print (x[np.ix_([1,5,7,2],[0,3,1,2])])

输出结果为:
[[ 4 7 5 6]
[20 23 21 22]
[28 31 29 30]
[ 8 11 9 10]]

NumPy 广播(Broadcast)

广播(Broadcast)是 numpy 对不同形状(shape)的数组进行数值计算的方式, 对数组的算术运算通常在相应的元素上进行。

如果两个数组 a 和 b 形状相同,即满足 a.shape == b.shape,那么 a*b 的结果就是 a 与 b 数组对应位相乘。这要求维数相同,且各维度的长度相同。

广播的规则:

  • 让所有输入数组都向其中形状最长的数组看齐,形状中不足的部分都通过在前面加 1 补齐。
  • 输出数组的形状是输入数组形状的各个维度上的最大值。
  • 如果输入数组的某个维度和输出数组的对应维度的长度相同或者其长度为 1 时,这个数组能够用来计算,否则出错。
  • 当输入数组的某个维度的长度为 1 时,沿着此维度运算时都用此维度上的第一组值。

简单理解:对两个数组,分别比较他们的每一个维度(若其中一个数组没有当前维度则忽略),满足:

  • 数组拥有相同形状。
  • 当前维度的值相等。
  • 当前维度的值有一个是 1。

若条件不满足,抛出 “ValueError: frames are not aligned” 异常。

NumPy 迭代数组

NumPy 迭代器对象 numpy.nditer 提供了一种灵活访问一个或者多个数组元素的方式。

迭代器最基本的任务的可以完成对数组元素的访问。

接下来我们使用 arange() 函数创建一个 2X3 数组,并使用 nditer 对它进行迭代。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import numpy as np

a = np.arange(6).reshape(2,3)
print ('原始数组是:')
print (a)
print ('\n')
print ('迭代输出元素:')
for x in np.nditer(a):
print (x, end=", " )
print ('\n')

原始数组是:
[[0 1 2]
[3 4 5]]


迭代输出元素:
0, 1, 2, 3, 4, 5,

以上实例不是使用标准 C 或者 Fortran 顺序,选择的顺序是和数组内存布局一致的,这样做是为了提升访问的效率,默认是行序优先(row-major order,或者说是 C-order)。

这反映了默认情况下只需访问每个元素,而无需考虑其特定顺序。我们可以通过迭代上述数组的转置来看到这一点,并与以 C 顺序访问数组转置的 copy 方式做对比,如下实例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
import numpy as np

a = np.arange(6).reshape(2,3)
for x in np.nditer(a.T):
print (x, end=", " )
print ('\n')

for x in np.nditer(a.T.copy(order='C')):
print (x, end=", " )
print ('\n')

输出结果为:
0, 1, 2, 3, 4, 5,
0, 3, 1, 4, 2, 5,

从上述例子可以看出,a 和 a.T 的遍历顺序是一样的,也就是他们在内存中的存储顺序也是一样的,但是 a.T.copy(order = ‘C’) 的遍历结果是不同的,那是因为它和前两种的存储方式是不一样的,默认是按行访问。

控制遍历顺序

  • for x in np.nditer(a, order='F'):Fortran order,即是列序优先;
  • for x in np.nditer(a.T, order='C'):C order,即是行序优先;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import numpy as np

a = np.arange(0,60,5)
a = a.reshape(3,4)
print ('原始数组是:')
print (a)
print ('\n')
print ('原始数组的转置是:')
b = a.T
print (b)
print ('\n')
print ('以 C 风格顺序排序:')
c = b.copy(order='C')
print (c)
for x in np.nditer(c):
print (x, end=", " )
print ('\n')
print ('以 F 风格顺序排序:')
c = b.copy(order='F')
print (c)
for x in np.nditer(c):
print (x, end=", " )

输出结果为:
原始数组是:
[[ 0 5 10 15]
[20 25 30 35]
[40 45 50 55]]

原始数组的转置是:
[[ 0 20 40]
[ 5 25 45]
[10 30 50]
[15 35 55]]

以 C 风格顺序排序:
[[ 0 20 40]
[ 5 25 45]
[10 30 50]
[15 35 55]]
0, 20, 40, 5, 25, 45, 10, 30, 50, 15, 35, 55,

以 F 风格顺序排序:
[[ 0 20 40]
[ 5 25 45]
[10 30 50]
[15 35 55]]
0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55,

可以通过显式设置,来强制 nditer 对象使用某种顺序:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import numpy as np 

a = np.arange(0,60,5)
a = a.reshape(3,4)
print ('原始数组是:')
print (a)
print ('\n')
print ('以 C 风格顺序排序:')
for x in np.nditer(a, order = 'C'):
print (x, end=", " )
print ('\n')
print ('以 F 风格顺序排序:')
for x in np.nditer(a, order = 'F'):
print (x, end=", " )

输出结果为:
原始数组是:
[[ 0 5 10 15]
[20 25 30 35]
[40 45 50 55]]


以 C 风格顺序排序:
0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55,

以 F 风格顺序排序:
0, 20, 40, 5, 25, 45, 10, 30, 50, 15, 35, 55,

修改数组中元素的值

nditer 对象有另一个可选参数 op_flags。 默认情况下,nditer 将视待迭代遍历的数组为只读对象(read-only),为了在遍历数组的同时,实现对数组元素值得修改,必须指定 read-write 或者 write-only 的模式。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
import numpy as np

a = np.arange(0,60,5)
a = a.reshape(3,4)
print ('原始数组是:')
print (a)
print ('\n')
for x in np.nditer(a, op_flags=['readwrite']):
x[...]=2*x
print ('修改后的数组是:')
print (a)

输出结果为:
原始数组是:
[[ 0 5 10 15]
[20 25 30 35]
[40 45 50 55]]

修改后的数组是:
[[ 0 10 20 30]
[ 40 50 60 70]
[ 80 90 100 110]]

使用外部循环

nditer类的构造器拥有flags参数,它可以接受下列值:

参数 描述
c_index 可以跟踪 C 顺序的索引
f_index 可以跟踪 Fortran 顺序的索引
multi-index 每次迭代可以跟踪一种索引类型
external_loop 给出的值是具有多个值的一维数组,而不是零维数组

在下面的实例中,迭代器遍历对应于每列,并组合为一维数组。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import numpy as np 
a = np.arange(0,60,5)
a = a.reshape(3,4)
print ('原始数组是:')
print (a)
print ('\n')
print ('修改后的数组是:')
for x in np.nditer(a, flags = ['external_loop'], order = 'F'):
print (x, end=", " )

输出结果为:
原始数组是:
[[ 0 5 10 15]
[20 25 30 35]
[40 45 50 55]]

修改后的数组是:
[ 0 20 40], [ 5 25 45], [10 30 50], [15 35 55],

广播迭代

如果两个数组是可广播的,nditer 组合对象能够同时迭代它们。 假设数组 a 的维度为 3X4,数组 b 的维度为 1X4 ,则使用以下迭代器(数组 b 被广播到 a 的大小)。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import numpy as np 

a = np.arange(0,60,5)
a = a.reshape(3,4)
print ('第一个数组为:')
print (a)
print ('\n')
print ('第二个数组为:')
b = np.array([1, 2, 3, 4], dtype = int)
print (b)
print ('\n')
print ('修改后的数组为:')
for x,y in np.nditer([a,b]):
print ("%d:%d" % (x,y), end=", " )

输出结果为:
第一个数组为:
[[ 0 5 10 15]
[20 25 30 35]
[40 45 50 55]]

第二个数组为:
[1 2 3 4]

修改后的数组为:
0:1, 5:2, 10:3, 15:4, 20:1, 25:2, 30:3, 35:4, 40:1, 45:2, 50:3, 55:4,

Numpy 数组操作

Numpy 中包含了一些函数用于处理数组,大概可分为以下几类:

  • 修改数组形状
  • 翻转数组
  • 修改数组维度
  • 连接数组
  • 分割数组
  • 数组元素的添加与删除

修改数组形状

函数 描述
reshape 不改变数据的条件下修改形状
flat 数组元素迭代器
flatten 返回一份数组拷贝,对拷贝所做的修改不会影响原始数组
ravel 返回展开数组

numpy.reshape(arr, newshape, order=’C’)

  • arr:要修改形状的数组
  • newshape:整数或者整数数组,新的形状应当兼容原有形状
  • order:’C’ – 按行,’F’ – 按列,’A’ – 原顺序,’k’ – 元素在内存中的出现顺序。

numpy.ndarray.flat

numpy.ndarray.flat 是一个数组元素迭代器,实例如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import numpy as np

a = np.arange(9).reshape(3,3)
print ('原始数组:')
for row in a:
print (row)

#对数组中每个元素都进行处理,可以使用flat属性,该属性是一个数组元素迭代器:
print ('迭代后的数组:')
for element in a.flat:
print (element)

原始数组:
[0 1 2]
[3 4 5]
[6 7 8]
迭代后的数组:
0
1
2
3
4
5
6
7
8

ndarray.flatten(order=’C’)

numpy.ndarray.flatten 返回一份数组拷贝,对拷贝所做的修改不会影响原始数组

参数说明:

  • order:’C’ – 按行,’F’ – 按列,’A’ – 原顺序,’K’ – 元素在内存中的出现顺序。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import numpy as np

a = np.arange(8).reshape(2,4)

print ('原数组:')
print (a)
print ('\n')
# 默认按行

print ('展开的数组:')
print (a.flatten())
print ('\n')

print ('以 F 风格顺序展开的数组:')
print (a.flatten(order = 'F'))

原数组:
[[0 1 2 3]
[4 5 6 7]]

展开的数组:
[0 1 2 3 4 5 6 7]

以 F 风格顺序展开的数组:
[0 4 1 5 2 6 3 7]

numpy.ravel(a, order=’C’)

numpy.ravel() 展平的数组元素,顺序通常是”C风格”,返回的是数组视图(view,有点类似 C/C++引用reference的意味),修改会影响原始数组。

参数说明:

  • order:’C’ – 按行,’F’ – 按列,’A’ – 原顺序,’K’ – 元素在内存中的出现顺序。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import numpy as np

a = np.arange(8).reshape(2,4)

print ('原数组:')
print (a)
print ('\n')

print ('调用 ravel 函数之后:')
print (a.ravel())
print ('\n')

print ('以 F 风格顺序调用 ravel 函数之后:')
print (a.ravel(order = 'F'))

原数组:
[[0 1 2 3]
[4 5 6 7]]

调用 ravel 函数之后:
[0 1 2 3 4 5 6 7]

以 F 风格顺序调用 ravel 函数之后:
[0 4 1 5 2 6 3 7]

翻转数组

函数 描述
transpose 对换数组的维度
ndarray.T self.transpose() 相同
rollaxis 向后滚动指定的轴
swapaxes 对换数组的两个轴

numpy.transpose(a, axes=None)

numpy.transpose 函数用于对换数组的维度

numpy.ndarray.T 类似 numpy.transpose

参数说明:

  • arr:要操作的数组
  • axes:整数列表,对应维度,通常所有维度都会对换。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import numpy as np

a = np.arange(12).reshape(3,4)

print ('原数组:')
print (a )
print ('\n')

print ('对换数组:')
print (np.transpose(a))

原数组:
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]

对换数组:
[[ 0 4 8]
[ 1 5 9]
[ 2 6 10]
[ 3 7 11]]
-------------本文结束感谢您的阅读-------------