python collections module

Source code: Lib/collections/init.py

这个模块实现了特定目标的容器,以提供Python标准内建容器 dict , list , set , 和 tuple 的替代选择。

方法概述

namedtuple() 创建命名元组子类的工厂函数
deque 类似列表(list)的容器,实现了在两端快速添加(append)和弹出(pop)
ChainMap 类似字典(dict)的容器类,将多个映射集合到一个视图里面
Counter 字典的子类,提供了可哈希对象的计数功能
OrderedDict 字典的子类,保存了他们被添加的顺序
defaultdict 字典的子类,提供了一个工厂函数,为字典查询提供一个默认值
UserDict 封装了字典对象,简化了字典子类化
UserList 封装了列表对象,简化了列表子类化
UserString 封装了列表对象,简化了字符串子类化

ChainMap 对象

class collections.ChainMap(*maps)

一个 ChainMap 将多个字典或者其他映射组合在一起,创建一个单独的可更新的视图。 如果没有 maps 被指定,就提供一个默认的空字典,这样一个新链至少有一个映射。

底层映射被存储在一个列表中。这个列表是公开的,可以通过 maps 属性存取和更新。没有其他的状态。

搜索查询底层映射,直到一个键被找到。不同的是,写,更新和删除只操作第一个映射。

一个 ChainMap 通过引用合并底层映射。 所以,如果一个底层映射更新了,这些更改会反映到 ChainMap 。

支持所有常用字典方法。另外还有一个 maps 属性(attribute),一个创建子上下文的方法(method), 一个存取它们首个映射的属性(property):

1
2
3
4
5
6
7
8
>>> from collections import ChainMap

>>> baseline = {'music': 'bach', 'art': 'rembrandt'}
>>> adjustments = {'art': 'van gogh', 'opera': 'carmen'}

>>> comb = ChainMap(baseline, adjustments)
>>> list(comb)
['music', 'art', 'opera']

maps

一个可以更新的映射列表。这个列表是按照第一次搜索到最后一次搜索的顺序组织的。它是仅有的存储状态,可以被修改。列表最少包含一个映射。

1
2
>>> comb.maps
[{'music': 'bach', 'art': 'rembrandt'}, {'art': 'van gogh', 'opera': 'carmen'}]

new_child(m=None)

返回一个新的 ChainMap 类,包含了一个新映射(map),后面跟随当前实例的全部映射(map)。如果 m 被指定,它就成为不同新的实例,就是在所有映射前加上 m,如果没有指定,就加上一个空字典,这样的话一个 d.new_child() 调用等价于 ChainMap({}, *d.maps) 。这个方法用于创建子上下文,不改变任何父映射的值。

在 3.4 版更改: 添加了 m 可选参数。

1
2
>>> comb.new_child({'sport': 'swim'})
ChainMap({'sport': 'swim'}, {'music': 'bach', 'art': 'rembrandt'}, {'art': 'van gogh', 'opera': 'carmen'})

parents

属性返回一个新的 ChainMap 包含所有的当前实例的映射,除了第一个。这样可以在搜索的时候跳过第一个映射。 使用的场景类似在 nested scopes 嵌套作用域中使用 nonlocal 关键词。用例也可以类比内建函数 super() 。一个 d.parents 的引用等价于 ChainMap(*d.maps[1:]) 。

1
2
>>> comb.parents
ChainMap({'art': 'van gogh', 'opera': 'carmen'})

ChainMap 例子和方法

模拟Python内部lookup链的例子

1
2
import builtins
pylookup = ChainMap(locals(), globals(), vars(builtins))

让用户指定的命令行参数优先于环境变量,优先于默认值的例子

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
from collections import ChainMap
import os
import argparse

defaults = {'color': 'red', 'user': 'guest'}

parser = argparse.ArgumentParser()
parser.add_argument('-u', '--user')
parser.add_argument('-c', '--color')
namespace = parser.parse_args()
command_line_args = {k: v for k, v in vars(namespace).items() if v is not None}

combined = ChainMap(command_line_args, os.environ, defaults)
print(combined['color'])
print(combined['user'])

ChainMap 类只更新链中的第一个映射,但lookup会搜索整个链。 然而,如果需要深度写和删除,也可以很容易的通过定义一个子类来实现它

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
class DeepChainMap(ChainMap):
'Variant of ChainMap that allows direct updates to inner scopes'

def __setitem__(self, key, value):
for mapping in self.maps:
if key in mapping:
mapping[key] = value
return
self.maps[0][key] = value

def __delitem__(self, key):
for mapping in self.maps:
if key in mapping:
del mapping[key]
return
raise KeyError(key)

>>> d = DeepChainMap({'zebra': 'black'}, {'elephant': 'blue'}, {'lion': 'yellow'})
>>> d['lion'] = 'orange' # update an existing key two levels down
>>> d['snake'] = 'red' # new keys get added to the topmost dict
>>> del d['elephant'] # remove an existing key one level down
>>> d # display result
DeepChainMap({'zebra': 'black', 'snake': 'red'}, {}, {'lion': 'orange'})

Counter 对象

一个计数器工具提供快速和方便的计数。比如:

1
2
3
4
5
6
7
8
9
10
11
12
13
>>> # Tally occurrences of words in a list
>>> cnt = Counter()
>>> for word in ['red', 'blue', 'red', 'green', 'blue', 'blue']:
... cnt[word] += 1
>>> cnt
Counter({'blue': 3, 'red': 2, 'green': 1})

>>> # Find the ten most common words in Hamlet
>>> import re
>>> words = re.findall(r'\w+', open('hamlet.txt').read().lower())
>>> Counter(words).most_common(10)
[('the', 1143), ('and', 966), ('to', 762), ('of', 669), ('i', 631),
('you', 554), ('a', 546), ('my', 514), ('hamlet', 471), ('in', 451)]

class collections.Counter([iterable-or-mapping])

一个 Counter 是一个 dict 的子类,用于计数可哈希对象。它是一个集合,元素像字典键(key)一样存储,它们的计数存储为值。计数可以是任何整数值,包括0和负数。 Counter 类有点像其他语言中的 bags或multisets。

元素从一个 iterable 被计数或从其他的 mapping (or counter)初始化:

1
2
3
4
>>> c = Counter()                           # a new, empty counter
>>> c = Counter('gallahad') # a new counter from an iterable
>>> c = Counter({'red': 4, 'blue': 2}) # a new counter from a mapping
>>> c = Counter(cats=4, dogs=8) # a new counter from keyword args

Counter对象有一个字典接口,如果引用的键没有任何记录,就返回一个0,而不是弹出一个 KeyError :

1
2
3
>>> c = Counter(['eggs', 'ham'])
>>> c['bacon'] # count of a missing element is zero
0

设置一个计数为0不会从计数器中移去一个元素。使用 del 来删除它:

1
2
>>> c['sausage'] = 0                        # counter entry with a zero count
>>> del c['sausage'] # del actually removes the entry

在 3.7 版更改: 作为 dict 的子类,Counter 继承了记住插入顺序的功能。 Counter 对象进行数学运算时同样会保持顺序。 结果会先按每个元素在运算符左边的出现时间排序,然后再按其在运算符右边的出现时间排序。

计数器对象除了字典方法以外,还提供了三个其他的方法:

elements()

返回一个迭代器,其中每个元素将重复出现计数值所指定次。 元素会按首次出现的顺序返回。 如果一个元素的计数值小于一,elements() 将会忽略它。

1
2
3
>>> c = Counter(a=4, b=2, c=0, d=-2)
>>> sorted(c.elements())
['a', 'a', 'a', 'a', 'b', 'b']

most_common([n])

返回一个列表,其中包含 n 个最常见的元素及出现次数,按常见程度由高到低排序。 如果 n 被省略或为 None,most_common() 将返回计数器中的 所有 元素。 计数值相等的元素按首次出现的顺序排序:

1
2
>>> Counter('abracadabra').most_common(3)
[('a', 5), ('b', 2), ('r', 2)]

通常字典方法都可用于 Counter 对象,除了有两个方法工作方式与字典并不相同。

fromkeys(iterable)

这个类方法没有在 Counter 中实现。

update([iterable-or-mapping])

从 迭代对象 计数元素或者 从另一个 映射对象 (或计数器) 添加。 像 dict.update() 但是是加上,而不是替换。另外,迭代对象 应该是序列元素,而不是一个 (key, value) 对。

Counter对象的常用案例

1
2
3
4
5
6
7
8
9
sum(c.values())                 # total of all counts
c.clear() # reset all counts
list(c) # list unique elements
set(c) # convert to a set
dict(c) # convert to a regular dictionary
c.items() # convert to a list of (elem, cnt) pairs
Counter(dict(list_of_pairs)) # convert from a list of (elem, cnt) pairs
c.most_common()[:-n-1:-1] # n least common elements
+c # remove zero and negative counts

提供了几个数学操作,可以结合 Counter 对象,以生产 multisets (计数器中大于0的元素)。 加和减,结合计数器,通过加上或者减去元素的相应计数。交集和并集返回相应计数的最小或最大值。每种操作都可以接受带符号的计数,但是输出会忽略掉结果为零或者小于零的计数。

1
2
3
4
5
6
7
8
9
10
>>> c = Counter(a=3, b=1)
>>> d = Counter(a=1, b=2)
>>> c + d # add two counters together: c[x] + d[x]
Counter({'a': 4, 'b': 3})
>>> c - d # subtract (keeping only positive counts)
Counter({'a': 2})
>>> c & d # intersection: min(c[x], d[x])
Counter({'a': 1, 'b': 1})
>>> c | d # union: max(c[x], d[x])
Counter({'a': 3, 'b': 2})

单目加和减(一元操作符)意思是从空计数器加或者减去。

1
2
3
4
5
>>> c = Counter(a=2, b=-4)
>>> +c
Counter({'a': 2})
>>> -c
Counter({'b': 4})

deque 对象

class collections.deque([iterable[, maxlen]])

返回一个新的双向队列对象,从左到右初始化(用方法 append()) ,从 iterable (迭代对象) 数据创建。如果 iterable 没有指定,新队列为空。

Deque队列是由栈或者queue队列生成的(发音是 “deck”,”double-ended queue”的简称)。Deque 支持线程安全,内存高效添加(append)和弹出(pop),从两端都可以,两个方向的大概开销都是 O(1) 复杂度。

虽然 list 对象也支持类似操作,不过这里优化了定长操作和 pop(0) 和 insert(0, v) 的开销。它们引起 O(n) 内存移动的操作,改变底层数据表达的大小和位置。

如果 maxlen 没有指定或者是 None ,deques 可以增长到任意长度。否则,deque就限定到指定最大长度。一旦限定长度的deque满了,当新项加入时,同样数量的项就从另一端弹出。限定长度deque提供类似Unix filter tail 的功能。它们同样可以用与追踪最近的交换和其他数据池活动。

双向队列(deque)对象支持以下方法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
>>> from collections import deque
>>> d = deque('ghi') # make a new deque with three items
>>> for elem in d: # iterate over the deque's elements
... print(elem.upper())
G
H
I

>>> list(d) # list the contents of the deque
['g', 'h', 'i']
>>> d[0] # peek at leftmost item
'g'
>>> d[-1] # peek at rightmost item
'i'

append(x)

添加 x 到右端。

1
2
3
4
5
>>> from collections import deque
>>> d = deque('ghi')
>>> d.append('j') # add a new entry to the right side
>>> d
deque(['g', 'h', 'i', 'j'])

appendleft(x)

添加 x 到左端。

1
2
3
4
5
>>> from collections import deque
>>> d = deque('ghi')
>>> d.appendleft('f') # add a new entry to the left side
>>> d # show the representation of the deque
deque(['f', 'g', 'h', 'i'])

clear()

移除所有元素,使其长度为0.

1
2
3
4
5
>>> from collections import deque
>>> d = deque('ghi')
>>> d.clear()
>>> d
deque([])

copy()

创建一份浅拷贝。

3.5 新版功能.

1
2
3
4
>>> from collections import deque
>>> d = deque('ghi')
>>> d.copy()
deque('g', 'h', 'i')

count(x)

计算deque中个数等于 x 的元素。

3.2 新版功能.

1
2
3
4
>>> from collections import deque
>>> d = deque('ghi')
>>> d.count('h')
1

extend(iterable)

扩展deque的右侧,通过添加iterable参数中的元素。

1
2
3
4
5
>>> from collections import deque
>>> d = deque('ghi')
>>> d.extend('lmn')
>>> d
deque(['g', 'h', 'i', 'l', 'm', 'n'])

extendleft(iterable)

扩展deque的左侧,通过添加iterable参数中的元素。注意,左添加时,在结果中iterable参数中的顺序将被反过来添加。

1
2
3
4
5
>>> from collections import deque
>>> d = deque('ghi')
>>> d.extendleft('def')
>>> d
deque(['f', 'e', 'd', 'g', 'h', 'i'])

index(x[, start[, stop]])

返回第 x 个元素(从 start 开始计算,在 stop 之前)。返回第一个匹配,如果没找到的话,升起 ValueError 。

3.5 新版功能.

1
2
3
4
5
6
7
8
9
10
>>> from collections import deque
>>> d = deque('ghi')
>>> d.index('h')
1

>>> d.index('x')
Traceback (most recent call last):
File "<pyshell#111>", line 1, in <module>
d.index('x')
ValueError: 'x' is not in deque

insert(i, x)

在位置 i 插入 x 。

如果插入会导致一个限长deque超出长度 maxlen 的话,就升起一个 IndexError 。

3.5 新版功能.

1
2
3
4
5
>>> from collections import deque
>>> d = deque('ghi')
>>> d.insert(0, 'f')
>>> d
deque(['f', 'g', 'h', 'i'])

pop()

移去并且返回一个元素,deque最右侧的那一个。如果没有元素的话,就升起 IndexError 索引错误。

1
2
3
4
>>> from collections import deque
>>> d = deque('ghi')
>>> d.pop() # return and remove the rightmost item
'i'

popleft()

移去并且返回一个元素,deque最左侧的那一个。如果没有元素的话,就升起 IndexError 索引错误。

1
2
3
4
>>> from collections import deque
>>> d = deque('ghi')
>>> d.popleft() # return and remove the leftmost item
'g'

remove(value)

移去找到的第一个 value。 如果没有的话就升起 ValueError 。

1
2
3
4
5
6
7
8
9
10
11
>>> from collections import deque
>>> d = deque('ghi')
>>> d.remove('h')
>>> d
deque('g', 'i')

>>> d.remove('h')
Traceback (most recent call last):
File "<pyshell#119>", line 1, in <module>
d.remove('h')
ValueError: deque.remove(x): x not in deque

reverse()

将deque逆序排列。返回 None 。

3.2 新版功能.

1
2
3
4
5
>>> from collections import deque
>>> d = deque('ghi')
>>> d.reverse()
>>> d
deque(['i', 'h', 'g'])

rotate(n=1)

向右循环移动 n 步。 如果 n 是负数,就向左循环。

如果deque不是空的,向右循环移动一步就等价于 d.appendleft(d.pop()) , 向左循环一步就等价于 d.append(d.popleft()) 。

Deque对象同样提供了一个只读属性:

1
2
3
4
5
6
7
8
9
10
>>> from collections import deque
>>> d = deque('ghi')
>>> d.rotate(1) # right rotation
>>> d
deque(['i', 'g', 'h'])

>>> d = deque('ghi')
>>> d.rotate(-1) # left rotation
>>> d
deque(['h', 'i', 'g'])

maxlen

Deque的最大尺寸,如果没有限定的话就是 None 。

3.1 新版功能.

除了以上操作,deque 还支持迭代、封存、len(d)、reversed(d)、copy.copy(d)、copy.deepcopy(d)、成员检测运算符 in 以及下标引用例如通过 d[0] 访问首个元素等。 索引访问在两端的复杂度均为 O(1) 但在中间则会低至 O(n)。 如需快速随机访问,请改用列表。

Deque从版本3.5开始支持 __add__(),__mul__(), 和 __imul__() 。

deque 用法

限长deque提供了类似Unix tail 过滤功能

1
2
3
4
def tail(filename, n=10):
'Return the last n lines of a file'
with open(filename) as f:
return deque(f, n)

维护一个近期添加元素的序列,通过从右边添加和从左边弹出:

1
2
3
4
5
6
7
8
9
10
11
def moving_average(iterable, n=3):
# moving_average([40, 30, 50, 46, 39, 44]) --> 40.0 42.0 45.0 43.0
# http://en.wikipedia.org/wiki/Moving_average
it = iter(iterable)
d = deque(itertools.islice(it, n-1))
d.appendleft(0)
s = sum(d)
for elem in it:
s += elem - d.popleft()
d.append(elem)
yield s / n

defaultdict 对象

class collections.defaultdict([default_factory[, …]])

返回一个新的类似字典的对象。 defaultdict 是内置 dict 类的子类。它重载了一个方法并添加了一个可写的实例变量。其余的功能与 dict 类相同,此处不再重复说明。

本对象包含一个名为 default_factory 的属性,构造时,第一个参数用于为该属性提供初始值,默认为 None。所有其他参数(包括关键字参数)都相当于传递给 dict 的构造函数。

defaultdict 对象除了支持标准 dict 的操作,还支持以下方法作为扩展:

missing(key)

如果 default_factory 属性为 None,则调用本方法会抛出 KeyError 异常,附带参数 key。

如果 default_factory 不为 None,则它会被(不带参数地)调用来为 key 提供一个默认值,这个值和 key 作为一对键值对被插入到字典中,并作为本方法的返回值返回。

如果调用 default_factory 时抛出了异常,这个异常会原封不动地向外层传递。

在无法找到所需键值时,本方法会被 dict 中的 getitem() 方法调用。无论本方法返回了值还是抛出了异常,都会被 getitem() 传递。

注意,missing() 不会 被 getitem() 以外的其他方法调用。意味着 get() 会像正常的 dict 那样返回 None,而不是使用 default_factory。

defaultdict 对象支持以下实例变量:

default_factory

本属性由 missing() 方法来调用。如果构造对象时提供了第一个参数,则本属性会被初始化成那个参数,如果未提供第一个参数,则本属性为 None。

defaultdict 例子

使用 list 作为 default_factory,很轻松地将(键-值对组成的)序列转换为(键-列表组成的)字典:

1
2
3
4
5
6
7
>>> s = [('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)]
>>> d = defaultdict(list)
>>> for k, v in s:
... d[k].append(v)
...
>>> sorted(d.items())
[('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]

等价于:

1
2
3
4
5
6
d = {}
>>> for k, v in s:
... d.setdefault(k, []).append(v)
...
>>> sorted(d.items())
[('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]

函数 int() 总是返回 0,这是常数函数的特殊情况。一个更快和灵活的方法是使用 lambda 函数,可以提供任何常量值(不只是0):

1
2
3
4
5
6
>>> def constant_factory(value):
... return lambda: value
>>> d = defaultdict(constant_factory('<missing>'))
>>> d.update(name='John', action='ran')
>>> '%(name)s %(action)s to %(object)s' % d
'John ran to <missing>'

设置 default_factoryset 使 defaultdict 用于构建 set 集合:

1
2
3
4
5
6
7
>>> s = [('red', 1), ('blue', 2), ('red', 3), ('blue', 4), ('red', 1), ('blue', 4)]
>>> d = defaultdict(set)
>>> for k, v in s:
... d[k].add(v)
...
>>> sorted(d.items())
[('blue', {2, 4}), ('red', {1, 3})]

namedtuple() 命名元组的工厂函数

collections.namedtuple(typename, field_names, *, rename=False, defaults=None, module=None)

返回一个新的元组子类,名为 typename 。这个新的子类用于创建类元组的对象,可以通过域名来获取属性值,同样也可以通过索引和迭代获取值。子类实例同样有文档字符串(类名和域名)另外一个有用的 repr() 方法,以 name=value 格式列明了元组内容。

field_names 是一个像 [‘x’, ‘y’] 一样的字符串序列。另外 field_names 可以是一个纯字符串,用空白或逗号分隔开元素名,比如 ‘x y’ 或者 ‘x, y’ 。

任何有效的Python 标识符都可以作为域名,除了下划线开头的那些。有效标识符由字母,数字,下划线组成,但首字母不能是数字或下划线,另外不能是关键词 keyword 比如 class, for, return, global, pass, 或 raise 。

rename 如果为真, 无效域名会自动转换成位置名。比如 [‘abc’, ‘def’, ‘ghi’, ‘abc’] 转换成 [‘abc’, ‘_1’, ‘ghi’, ‘_3’] , 消除关键词 def 和重复域名 abc 。

defaults 可以为 None 或者是一个默认值的 iterable 。如果一个默认值域必须跟其他没有默认值的域在一起出现,defaults 就应用到最右边的参数。比如如果域名 [‘x’, ‘y’, ‘z’] 和默认值 (1, 2) ,那么 x 就必须指定一个参数值 ,y 默认值 1 , z 默认值 2 。

如果 module 值有定义,命名元组的 module 属性值就被设置。

命名元组实例没有字典,所以它们要更轻量,并且占用更小内存。

除了继承元组的方法,命名元组还支持三个额外的方法和两个属性。为了防止域名冲突,方法和属性以下划线开始。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Basic example
>>> from collections import namedtuple

>>> Point = namedtuple('Point', ['x', 'y'])
>>> p = Point(11, y=22) # instantiate with positional or keyword arguments
>>> p[0] + p[1] # indexable like the plain tuple (11, 22)
33
>>> x, y = p # unpack like a regular tuple
>>> x, y
(11, 22)
>>> p.x + p.y # fields also accessible by name
33
>>> p # readable __repr__ with a name=value style
Point(x=11, y=22)

classmethod somenamedtuple._make(iterable)

类方法从存在的序列或迭代实例创建一个新实例。

1
2
3
>>> t = [11, 22]
>>> Point._make(t)
Point(x=11, y=22)

somenamedtuple._asdict()

返回一个新的 dict ,它将字段名称映射到它们对应的值:

1
2
3
>>> p = Point(x=11, y=22)
>>> p._asdict()
{'x': 11, 'y': 22}

在 3.1 版更改: 返回一个 OrderedDict 而不是 dict 。

在 3.8 版更改: 返回一个常规 dict 而不是 OrderedDict。 因为自 Python 3.7 起,常规字典已经保证有序。 如果需要 OrderedDict 的额外特性,推荐的解决方案是将结果转换为需要的类型: OrderedDict(nt._asdict())。

somenamedtuple._replace(**kwargs)

返回一个新的命名元组实例,并将指定域替换为新的值

1
2
3
4
5
6
>>> p = Point(x=11, y=22)
>>> p._replace(x=33)
Point(x=33, y=22)

>>> for partnum, record in inventory.items():
inventory[partnum] = record._replace(price=newprices[partnum], timestamp=time.now())

somenamedtuple._fields

字符串元组列出了域名。用于提醒和从现有元组创建一个新的命名元组类型。

1
2
3
4
5
6
7
>>> p._fields            # view the field names
('x', 'y')

>>> Color = namedtuple('Color', 'red green blue')
>>> Pixel = namedtuple('Pixel', Point._fields + Color._fields)
>>> Pixel(11, 22, 128, 255, 0)
Pixel(x=11, y=22, red=128, green=255, blue=0)

somenamedtuple._field_defaults

默认值的字典。

1
2
3
4
5
>>> Account = namedtuple('Account', ['type', 'balance'], defaults=[0])
>>> Account._field_defaults
{'balance': 0}
>>> Account('premium')
Account(type='premium', balance=0)

OrderedDict 对象

  • 常规的 dict 被设计为非常擅长映射操作。 跟踪插入顺序是次要的。
  • OrderedDict 旨在擅长重新排序操作。 空间效率、迭代速度和更新操作的性能是次要的。
  • 算法上, OrderedDict 可以比 dict 更好地处理频繁的重新排序操作。 这使其适用于跟踪最近的访问(例如在 LRU cache 中)。
  • 对于 OrderedDict ,相等操作检查匹配顺序。
  • OrderedDict 类的 popitem() 方法有不同的签名。它接受一个可选参数来指定弹出哪个元素。
  • OrderedDict 类有一个 move_to_end() 方法,可以有效地将元素移动到任一端。
  • 有序字典还另外提供了逆序迭代的支持,通过 reversed()
  • Python 3.8之前, dict 缺少 __reversed__() 方法。

class collections.OrderedDict([items])

popitem(last=True)

返回一个 dict 子类的实例,它具有专门用于重新排列字典顺序的方法。

有序字典的 popitem() 方法移除并返回一个 (key, value) 键值对。 如果 last 值为真,则按 LIFO 后进先出的顺序返回键值对,否则就按 FIFO 先进先出的顺序返回键值对。

move_to_end(key, last=True)

将现有 key 移动到有序字典的任一端。 如果 last 为真值(默认)则将元素移至末尾;如果 last 为假值则将元素移至开头。如果 key 不存在则会触发 KeyError:

1
2
3
4
5
6
7
>>> d = OrderedDict.fromkeys('abcde')
>>> d.move_to_end('b')
>>> ''.join(d.keys())
'acdeb'
>>> d.move_to_end('b', last=False)
>>> ''.join(d.keys())
'bacde'

OrderedDict 例子和用法

创建记住键值 最后 插入顺序的有序字典变体很简单。 如果新条目覆盖现有条目,则原始插入位置将更改并移至末尾:

1
2
3
4
5
6
class LastUpdatedOrderedDict(OrderedDict):
'Store items in the order the keys were last added'

def __setitem__(self, key, value):
super().__setitem__(key, value)
self.move_to_end(key)

一个 OrderedDict 对于实现 functools.lru_cache() 的变体也很有用:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
class LRU(OrderedDict):
'Limit size, evicting the least recently looked-up key when full'

def __init__(self, maxsize=128, /, *args, **kwds):
self.maxsize = maxsize
super().__init__(*args, **kwds)

def __getitem__(self, key):
value = super().__getitem__(key)
self.move_to_end(key)
return value

def __setitem__(self, key, value):
super().__setitem__(key, value)
if len(self) > self.maxsize:
oldest = next(iter(self))
del self[oldest]

UserDict 对象

UserDict 类是用作字典对象的外包装。对这个类的需求已部分由直接创建 dict 的子类的功能所替代;不过,这个类处理起来更容易,因为底层的字典可以作为属性来访问。

class collections.UserDict([initialdata])
模拟一个字典类。这个实例的内容保存为一个正常字典, 可以通过 UserDict 实例的 data 属性存取。如果提供了 initialdata 值, data 就被初始化为它的内容;注意一个 initialdata 的引用不会被保留作为其他用途。

UserDict 实例提供了以下属性作为扩展方法和操作的支持:

data
一个真实的字典,用于保存 UserDict 类的内容。

UserList 对象

这个类封装了列表对象。它是一个有用的基础类,对于你想自定义的类似列表的类,可以继承和覆盖现有的方法,也可以添加新的方法。这样我们可以对列表添加新的行为。

对这个类的需求已部分由直接创建 list 的子类的功能所替代;不过,这个类处理起来更容易,因为底层的列表可以作为属性来访问。

class collections.UserList([list])
模拟一个列表。这个实例的内容被保存为一个正常列表,通过 UserList 的 data 属性存取。实例内容被初始化为一个 list 的copy,默认为 [] 空列表。 list 可以是迭代对象,比如一个Python列表,或者一个 UserList 对象。

UserList 提供了以下属性作为可变序列的方法和操作的扩展:

data
一个 list 对象用于存储 UserList 的内容。

子类化的要求: UserList 的子类需要提供一个构造器,可以无参数调用,或者一个参数调用。返回一个新序列的列表操作需要创建一个实现类的实例。它假定了构造器可以以一个参数进行调用,这个参数是一个序列对象,作为数据源。

如果一个分离的类不希望依照这个需求,所有的特殊方法就必须重写;请参照源代码进行修改。

UserString 对象

UserString 类是用作字符串对象的外包装。对这个类的需求已部分由直接创建 str 的子类的功能所替代;不过,这个类处理起来更容易,因为底层的字符串可以作为属性来访问。

class collections.UserString(seq)
模拟一个字符串对象。这个实例对象的内容保存为一个正常字符串,通过 UserString 的 data 属性存取。实例内容初始化设置为 seq 的copy。seq 参数可以是任何可通过内建 str() 函数转换为字符串的对象。

UserString 提供了以下属性作为字符串方法和操作的额外支持:

data
一个真正的 str 对象用来存放 UserString 类的内容。

在 3.5 版更改: 新方法 getnewargs, rmod, casefold, format_map, isprintable, 和 maketrans。

参考

https://docs.python.org/zh-cn/3/library/collections.html#module-collections

-------------本文结束感谢您的阅读-------------